试题
题目:
(2002·常州)如图,AB为⊙O直径,CE切⊙O于点C,CD⊥AB,D为垂足,AB=12cm,∠B=30°,则∠ECB=
60
60
度;CD=
3
3
3
3
cm.
答案
60
3
3
解:∵AB为⊙O直径,
∴∠ACB=90°,∠A=60°;
由弦切角定理知,∠ECB=∠A=60°;
在Rt△ABC中,∠B=30°,AB=12cm;
BC=AB·cos∠B=6
3
cm;
在Rt△BCD中,∠B=30°,BC=6
3
cm;
CD=BC·sin∠B=3
3
cm.
故∠ECB=60°,CD=3
3
cm.
考点梳理
考点
分析
点评
弦切角定理;圆周角定理.
由圆周角定理可知:∠ACB=90°,因此∠B和∠A互余,由此可求出∠A的度数;进而可根据弦切角定理求得∠ECB的度数.
在Rt△ACB中,已知了∠B=30°,可根据AB的长求出BC的值,进而可在Rt△BCD中求出CD的长.
本题考查了弦切角定理、圆周角定理、直角三角形的性质、解直角三角形的应用等知识.
找相似题
(2011·台湾)如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?( )
(2004·深圳)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=( )
(2004·丽水)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是( )
(2002·佛山)如图,直线AB切⊙O于点A,割线BDC交⊙O于点D、C.若∠C=30°,∠B=20°,则∠ADC=( )
(2001·武汉)已知:⊙O的内接四边形ABCD中,AB是⊙O的直径,∠BCD=120°.过D点的切线PD与BA的延长线交于P点,则∠ADP的度数是( )