试题
题目:
如图,AB是⊙O的直径,DB、DE分别切⊙O于点B、C,若∠ACE=25°,则∠D的度数是( )
A.50°
B.55°
C.60°
D.65°
答案
A
解:连接BC,
∵DB、DE分别切⊙O于点B、C,
∴∠ACE=∠ABC,BD=DC,
∵∠ACE=25°,
∴∠ABC=25°,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴∠DBC=∠DCB=90°-25°=65°,
∴∠D=50°.
故选A.
考点梳理
考点
分析
点评
专题
弦切角定理;圆周角定理;切线的性质.
连接BC,由弦切角定理得∠ACE=∠ABC,再由切线的性质求得∠DBC,最后由切线长定理求得∠D的度数.
本题考查了切线的性质、圆周角定理、弦切角定理等知识,综合性强,难度较大.
计算题.
找相似题
(2011·台湾)如图,BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点.若∠ADE=19°,则∠AFB的度数为何?( )
(2004·深圳)圆内接四边形ABCD中,AC平分∠BAD,EF切圆于C,若∠BCD=120°,则∠BCE=( )
(2004·丽水)如图,已知△ABC是⊙O的内接三角形,AD是⊙O的切线,点A为切点,∠ACB=60°,则∠DAB的度数是( )
(2002·佛山)如图,直线AB切⊙O于点A,割线BDC交⊙O于点D、C.若∠C=30°,∠B=20°,则∠ADC=( )
(2001·武汉)已知:⊙O的内接四边形ABCD中,AB是⊙O的直径,∠BCD=120°.过D点的切线PD与BA的延长线交于P点,则∠ADP的度数是( )