题目:

如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,矩形DEFG的顶点G与△ABC的顶点C重合,边GD、GF分别与AC,BC重合.GD=12,GF=16,矩形DEFG沿射线CB的方向以每秒4个单位长的速度匀速运动,点Q从点B出发沿BA方向以每秒5个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC-CA于点H,矩形DEFG、点Q同时出发,当点Q到达点A时停止运动,矩形DEFG也随之停止运动.设矩形DEFG、点Q运动的时间是t秒(t>0).
(1)求线段DF的长;
(2)求运动过程中,矩形DEFG与Rt△ABC重叠部分的面积s与t的函数关系式(写出自变量的取值范围);
(3)射线QK能否把矩形DEFG分成面积相等的两部分?若能,求出t值;若不能,说明理由;
(4)连接DH,当DH∥AB时,请直接写出t值.
答案

解:(1)如图1:连接DF,在Rt△CDF中,CD=12,CF=16,
根据勾股定理:
DF=
=20;
(2)∵在Rt△ABC中,∠C=90°,AB=50,AC=30,
∴BC=
=40,
根据题意得:当t=
=10时,停止运动;

如图2:当点E在AB上时,
∵∠C=90°,∠EFG=90°,
∴EF∥AC,
∴△BEF∽△BAC,
∴EF:AC=BF:BC,
∴12:30=BF:40,
∴BF=16,
∴CG=BC-BF-GF=40-16-16=8,
此时,t=8÷4=2;
如图3:当F与B重合时,
CG=BC-BG=40-16=24,
此时,t=24÷4=6,
∵tan∠ABC=
=
,tan∠GBD=
=
,
∴此时,点D在直线AB上;

①当0<t≤2时,s=S
矩形DEFG=12×16=192,
②如图4:当2<t≤6时,设矩形DEFG的边EF交BC于点M,边DE交AB于点N
∵BF=24-4t tanB=
=∴MF=
(24-4t)=18-3t,
∴EM=EF-FM=12-(18-3t)=3t-6,
∴NE=
EM=4t-8,
∴s=S
矩形DEFG-S
△EMN=192-
EM·EN=192-6(t-2)
2,
③如图5:当6<t≤10时,设DG与AB交于点M,BG=40-4t,
则MG=
BG=30-3t,
则s=S
△BMG=
BG·MG=
×(40-4t)(30-3t)=6(10-t)
2;

(3)能,
如图6:当QK经过矩形DEFG的对称中心O时,就可以把矩形DEFG分成面积相等的两部分;
∵在Rt△GDF与Rt△CAB中,tan∠GDF=
=
=
,tan∠B=
=
,
∴∠GFD=∠B,
∴DF∥AB,
∴
=,
∵DF=20,
∴OF=10,
∵BF=24-4t,HF=
OF=
,QB=5t,
∴BH=BF+FH=24-4t+
,
∴
=,
解得:t=
;

(4)如图7:过点D作MN⊥AB于N,交BC于M,
∵∠GMD+∠B=90°,∠GMD+∠GDM=90°,
∴∠GDM=∠B,
∴GM=GD·tan∠GDM=
×12=9,
∴DM=
=15,
∵BG=40-4t,
∴BM=BG+GM=40-4t+9=49-4t,
∴MN=BM·cos∠B=
(49-4t),
∴DN=MN-DM=
(49-4t)-15,
∵QH=
QB=
×5t=
t,
∵DH∥AB,
∴QH=DN,
则
t=
(49-4t)-15,
解得t=
.
故t值为
.

解:(1)如图1:连接DF,在Rt△CDF中,CD=12,CF=16,
根据勾股定理:
DF=
=20;
(2)∵在Rt△ABC中,∠C=90°,AB=50,AC=30,
∴BC=
=40,
根据题意得:当t=
=10时,停止运动;

如图2:当点E在AB上时,
∵∠C=90°,∠EFG=90°,
∴EF∥AC,
∴△BEF∽△BAC,
∴EF:AC=BF:BC,
∴12:30=BF:40,
∴BF=16,
∴CG=BC-BF-GF=40-16-16=8,
此时,t=8÷4=2;
如图3:当F与B重合时,
CG=BC-BG=40-16=24,
此时,t=24÷4=6,
∵tan∠ABC=
=
,tan∠GBD=
=
,
∴此时,点D在直线AB上;

①当0<t≤2时,s=S
矩形DEFG=12×16=192,
②如图4:当2<t≤6时,设矩形DEFG的边EF交BC于点M,边DE交AB于点N
∵BF=24-4t tanB=
=∴MF=
(24-4t)=18-3t,
∴EM=EF-FM=12-(18-3t)=3t-6,
∴NE=
EM=4t-8,
∴s=S
矩形DEFG-S
△EMN=192-
EM·EN=192-6(t-2)
2,
③如图5:当6<t≤10时,设DG与AB交于点M,BG=40-4t,
则MG=
BG=30-3t,
则s=S
△BMG=
BG·MG=
×(40-4t)(30-3t)=6(10-t)
2;

(3)能,
如图6:当QK经过矩形DEFG的对称中心O时,就可以把矩形DEFG分成面积相等的两部分;
∵在Rt△GDF与Rt△CAB中,tan∠GDF=
=
=
,tan∠B=
=
,
∴∠GFD=∠B,
∴DF∥AB,
∴
=,
∵DF=20,
∴OF=10,
∵BF=24-4t,HF=
OF=
,QB=5t,
∴BH=BF+FH=24-4t+
,
∴
=,
解得:t=
;

(4)如图7:过点D作MN⊥AB于N,交BC于M,
∵∠GMD+∠B=90°,∠GMD+∠GDM=90°,
∴∠GDM=∠B,
∴GM=GD·tan∠GDM=
×12=9,
∴DM=
=15,
∵BG=40-4t,
∴BM=BG+GM=40-4t+9=49-4t,
∴MN=BM·cos∠B=
(49-4t),
∴DN=MN-DM=
(49-4t)-15,
∵QH=
QB=
×5t=
t,
∵DH∥AB,
∴QH=DN,
则
t=
(49-4t)-15,
解得t=
.
故t值为
.