试题
题目:
如图1,在△ABC和△DEF中,AC∥DE,∠EFD与∠B互补,DE=kAC(k>1).试探索线段EF与AB的数量关系,并证明你的结论.
说明:如果你反复探索没有解决问题,可以选取k=1(图2)来证明,此时满分7分.
答案
结论:EF=kAB
解:过点A作AG∥EF,交BD于点G,
∴∠AGC=∠EFD.
∵∠EFD与∠B互补,
∴∠EFD+∠B=180.
∠AGC+∠B=180.
又∵∠AGC+∠AGB=180.
∴∠AGB=∠B.
∴AB=AG.
∵AC∥DE,
∴∠ACB=∠D.
∴△AGC∽△EFD.
k=1的情况证法同上,相似变全等.
结论:EF=kAB
解:过点A作AG∥EF,交BD于点G,
∴∠AGC=∠EFD.
∵∠EFD与∠B互补,
∴∠EFD+∠B=180.
∠AGC+∠B=180.
又∵∠AGC+∠AGB=180.
∴∠AGB=∠B.
∴AB=AG.
∵AC∥DE,
∴∠ACB=∠D.
∴△AGC∽△EFD.
k=1的情况证法同上,相似变全等.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
过点A作AG∥EF,交BD于点G,可得∠AGC=∠EFD.再根据∠EFD与∠B互补,∠AGC+∠AGB=180.可得AB=AG.再利用AC∥DE,求证
△AGC∽△EFD即可.
此题主要考查相似三角形的判定与性质这一知识点,有一定的拔高难度,难易程度适中,属于中档题.
证明题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )