试题
题目:
(2013·香坊区一模)如图,在Rt△ABC中,CD是斜边AB上的高,点F在CD上,DH⊥BF且与AC的延长线交于点E.若AC=
6
CF,CD=3,则AE的长为
3
6
3
6
.
答案
3
6
解:∵Rt△ABC中,CD是斜边AB上的高,
∴∠BCD=∠A,
∵DH⊥BF,
∴∠DFB=∠HDB,
∴∠BFC=∠ADE,
∴△BFC∽△EDA,
∴
BC
EA
=
CF
AD
,即AE·CF=AD·BC①,
∵∠BCD=∠A,
∴Rt△ACD∽△CBD,
∴
AC
BC
=
AD
CD
,即AC·CD=AD·BC②,
由①②得AE·CF=AC·CD,
∵AC=
6
CF,CD=3,
∴AE·CF=
6
CF·3,
∴AE=3
6
.
故答案为3
6
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
由于Rt△ABC中,CD是斜边AB上的高,利用等角的余角相等得到∠BCD=∠A,再由DH⊥BF得到∠DFB=∠HDB,根据相似三角形的判定得到△BFC∽△EDA,利用相似比得AE·CF=AD·BC①,易得Rt△ACD∽△CBD,利用相似比得AC·CD=AD·BC②,则AE·CF=AC·CD,然后把AC=
6
CF,CD=3代入计算即可得到AE的长.
本题考查了相似三角形的判定与性质:有两组角对应相等的两三角形相似;相似三角形的对应边的比相等,对应角相等.
计算题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )