试题
题目:
(2014·闸北区一模)如图,在平行四边形ABCD中,AB=12,AD=18,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=
8
2
,则△CEF的周长是
16
16
.
答案
16
解:∵在·ABCD中,AB=CD=12,AD=BC=18,∠BAD的平分线交BC于点E,
∴△ADF是等腰三角形,AD=DF=18;
∵AB=BE=12,
∴CF=6;
∴在△ABG中,BG⊥AE,AB=12,BG=8
2
,
可得:AG=4,
又∵BG⊥AE,
∴AE=2AG=8,
∴△ABE的周长等于32,
又∵·ABCD,
∴△CEF∽△BEA,相似比为1:2,
∴△CEF的周长为16.
故答案为16.
考点梳理
考点
分析
点评
相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;平行四边形的性质.
先计算出△ABE的周长,然后根据相似比的知识进行解答即可.
本题意在综合考查平行四边形、相似三角形和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查,相似三角形的周长比等于相似比,难度较大.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )