试题
题目:
(2006·河南)如图(1),用形状相同、大小不等的三块直角三角形木板,恰好能拼成如图(2)所示的四边形ABCD、若AE=4,CE=3BE,那么这个四边形的面积是
16
3
16
3
.
答案
16
3
解:∵形状相同、大小不等的三块直角三角形木板,
∴△ABE∽△ECD∽△DEA,∠B=∠C=∠AED=90°,
∴BE:CD=AB:EC,
∴四边形ABCD为矩形
∴AB=CD,
∴AB
2
=BE·EC,
∵CE=3BE,
∴AB=
3
BE,
∵AE=4,
∴BE=2,AB=2
3
,
∴BC=BE+CE=4BE=8,
∴这个四边形的面积是S=AB×BC=2
3
×8=16
3
.
故填:16
3
.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质;勾股定理.
依题意可以得到△ABE∽△ECD∽△DEA,∠B=∠C=∠D=90°,利用相似三角形的性质可以推出BE:CD=AB:EC,而四边形ABCD为矩形,可以得到AB=CD,所以AB
2
=BE·EC,又CE=3BE,可以得到AB=
3
BE,由此可以求出BE,CB,最后就可以求出面积.
此题考查了直角三角形的性质和相似三角形的性质,同时也考查了勾股定理,解题时要注意认识图形.
压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )