试题
题目:
(2009·雅安)如图,将△ABC沿BC方向平移得到△A′B′C′.已知BC=
3
cm,△ABC与△A′B′C′重叠部分(图中阴影部分)的面积是△ABC的
1
3
,则△ABC平移的距离BB′是
(
3
-1)
(
3
-1)
cm.
答案
(
3
-1)
解:如图,设AC与A′B′相交于点D,
根据平移的性质,AB∥A′B′,
∴△DB′C∽△ABC,
∵重叠部分(图中阴影部分)的面积是△ABC的
1
3
,
∴(
B′C
BC
)
2
=
1
3
,
∵BC=
3
cm,
∴(
B′C
3
)
2
=
1
3
,
解得B′C=1,
∴BB′=BC-B′C=(
3
-1)cm.
故答案为:(
3
-1).
考点梳理
考点
分析
点评
专题
平移的性质;相似三角形的判定与性质.
设AC与A′B′相交于点D,根据平移的性质判定△ABC与△B′CD相似,然后根据相似三角形面积的比等于相似比的平方求出B′C的长度,再根据BB′=BC-B′C,计算即可得解.
本题考查了平移的性质,相似三角形的判定与性质,判定出两三角形相似,利用相似三角形面积的比等于相似比的平方求出B′C的长度是解题的关键.
计算题;压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )