试题
题目:
(2011·湖州)如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=1,则BC的长是
3
3
.
答案
3
解:∵AD∥BC,
∴△AOD∽△BOC,
∵△AOD与△BOC的面积之比为1:9,
∴
AD
BC
=
1
3
,
∵AD=1,
∴BC=3.
故答案为:3.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
根据AD∥BC,求证△AOD∽△BOC,再利用相似三角形面积的比等于相似比的平方即可求得答案.
此题主要考查学生对相似三角形的判定与性质的理解和掌握,解答此题的关键是利用相似三角形面积的比等于相似比的平方.
计算题;压轴题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )