试题
题目:
如图,在·ABCD中,点E在BC边上,点F在DC的延长线上,且∠DAE=∠F.
(1)求证:△ABE∽△ECF;
(2)若AB=5,AD=8,BE=2,求FC的长.
答案
(1)证明:如图.
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC.
∴∠B=∠ECF,∠DAE=∠AEB.
又∵∠DAE=∠F,
∴∠AEB=∠F.
∴△ABE∽△ECF;
(2)解:∵△ABE∽△ECF,
∴
AB
EC
=
BE
CF
,
∵四边形ABCD是平行四边形,
∴BC=AD=8.
∴EC=BC-BE=8-2=6.
∴
5
6
=
2
CF
.
∴
CF=
12
5
.
(1)证明:如图.
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC.
∴∠B=∠ECF,∠DAE=∠AEB.
又∵∠DAE=∠F,
∴∠AEB=∠F.
∴△ABE∽△ECF;
(2)解:∵△ABE∽△ECF,
∴
AB
EC
=
BE
CF
,
∵四边形ABCD是平行四边形,
∴BC=AD=8.
∴EC=BC-BE=8-2=6.
∴
5
6
=
2
CF
.
∴
CF=
12
5
.
考点梳理
考点
分析
点评
相似三角形的判定与性质;平行四边形的性质.
(1)由平行四边形的性质可知AB∥CD,AD∥BC.所以∠B=∠ECF,∠DAE=∠AEB,又因为又∠DAE=∠F,进而可证明:△ABE∽△ECF;
(2)由(1)可知:△ABE∽△ECF,所以
AB
EC
=
BE
CF
,由平行四边形的性质可知BC=AD=8,所以EC=BC-BE=8-2=6,代入计算即可.
本题考查了平行四边形的性质、相似三角形的判定和性质,是中考常见题型.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )