试题
题目:
如图,AB=BC=CD=DE,∠B=90°,则∠1+∠2+∠3等于( )
A.45°
B.60°
C.75°
D.90°
答案
D
解:∵AB=BC,∠B=90°,∴∠1=45°.
设AB=BC=CD=DE=1,则AC=
2
,CE=2,
∴
CD
AC
=
1
2
,
AC
CE
=
2
2
=
1
2
,
∴△ACE∽△DCA,∴∠2=∠CAE.
∵∠1=∠CAE+∠3=∠2+∠3,
∴∠1+∠2+∠3=90°.
故选 D.
考点梳理
考点
分析
点评
专题
相似三角形的判定与性质.
根据AB=AC,∠B=90°,可以求得∠1=45°,设AB=BC=CD=DE=1,即可求证△ACE∽△DCA,即可求得∠1+∠2+∠3的度数,即可解题.
本题考查了相似三角形对应角相等的性质,考查了等腰三角形底角相等的性质,考查了相似三角形的判定,本题中求证∠1=∠CAE+∠3=∠2+∠3是解题的关键.
计算题.
找相似题
(2013·自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=
4
2
,则△EFC的周长为( )
(2013·淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是( )
(2013·重庆)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,CD=3cm,则AF的长为( )
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
(2013·新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )