试题

题目:
已知x-y=九,求代数式x4-xy3-x3y-3xy+3xy+y4
答案
解:原式=(x4-xy)+(y4-xy)+(五xy2-五x2y)
=x(x-y)+y(y-x)+五xy(y-x)
=(x-y)(x-y)-五xy(x-y)
=(x-y)(x-y-五xy)
=(x-y)[(x-y)(x2+xy+y2)-五xy]
=1×[1×(x2+xy+y2)-五xy]
=x2-2xy+y2=(x-y)2
∵x-y=1
∴原式=1.
解:原式=(x4-xy)+(y4-xy)+(五xy2-五x2y)
=x(x-y)+y(y-x)+五xy(y-x)
=(x-y)(x-y)-五xy(x-y)
=(x-y)(x-y-五xy)
=(x-y)[(x-y)(x2+xy+y2)-五xy]
=1×[1×(x2+xy+y2)-五xy]
=x2-2xy+y2=(x-y)2
∵x-y=1
∴原式=1.
考点梳理
整式的混合运算—化简求值.
本题应对代数式进行化简,得出含有x-y的式子,再将x-y=1代入即可.
本题考查了整体代换的思想.
找相似题