试题
题目:
(2012·朝阳区二模)如图,四边形ABCD是矩形,AB=3,BC=4,把矩形沿直线AC折叠,点B落在点F处,连接DF,CF与AD相交于点E,求DE的长和△ACE的面积.
答案
解:由题意,得FC=BC=4,AF=AB=3,∠1=∠2,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠1=∠3.
∴∠2=∠3.
∴AE=CE,
∴AD-AE=CF-CE,
即DE=FE.
设DE=x,则FE=x,CE=4-x,
在Rt△CDE中,DE
2
+CD
2
=CE
2
.
即x
2
+3
2
=(4-x)
2
,
解得:x=
7
8
.
即DE=
7
8
,
则AE=AD-DE=
25
8
,
则S
△ACE
=
1
2
AE·CD=
75
16
.
解:由题意,得FC=BC=4,AF=AB=3,∠1=∠2,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,
∴∠1=∠3.
∴∠2=∠3.
∴AE=CE,
∴AD-AE=CF-CE,
即DE=FE.
设DE=x,则FE=x,CE=4-x,
在Rt△CDE中,DE
2
+CD
2
=CE
2
.
即x
2
+3
2
=(4-x)
2
,
解得:x=
7
8
.
即DE=
7
8
,
则AE=AD-DE=
25
8
,
则S
△ACE
=
1
2
AE·CD=
75
16
.
考点梳理
考点
分析
点评
翻折变换(折叠问题);勾股定理;矩形的性质.
由题意,得FC=BC=4,AF=AB=3,∠1=∠2,又由四边形ABCD是矩形,易得△AEC是等腰三角形:DE=FE,然后设DE=x,则FE=x,CE=4-x,在Rt△CDE中,DE
2
+CD
2
=CE
2
,即可得方程x
2
+3
2
=(4-x)
2
,解此方程即可求得DE的长,继而求得△ACE的面积.
此题考查了矩形的性质、折叠的性质以及等腰三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
(2012·黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )