试题
题目:
如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB=
1
2
∠MFE.则∠MFB=
36°
36°
.
答案
36°
解:由折叠的性质可得:∠MFE=∠EFC,
∵∠MFB=
1
2
∠MFE,
设∠MFB=x°,则∠MFE=∠EFC=2x°,
∵∠MFB+∠MFE+∠EFC=180°,
∴x+2x+2x=180,
解得:x=36°,
∴∠MFB=36°.
故答案为:36°.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);矩形的性质.
由折叠的性质可得:∠MFE=∠EFC,又由∠MFB=
1
2
∠MFE,可设∠MFB=x°,然后根据平角的定义,即可得方程:x+2x+2x=180,解此方程即可求得答案.
此题考查了折叠的性质、矩形的性质及平角的定义,解题的关键是注意方程思想与数形结合思想的应用,难度一般.
数形结合.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
(2012·黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )