试题

题目:
青果学院如图,在矩形ABCD中,对角线AC、BD的交点为O,矩形的长、宽分别为7cm、4cm,EF过点O分别交AD、CB于E、F,那么图中阴影部分面积为
7
7
cm2
答案
7

解:在矩形ABCD中,对角线AC、BD的交点为O,
∴AO=CO
∵EF过点O分别交AD、CB于E、F
∴∠AEO=∠CFO
∵∠AOE=∠COF,∠AEO=∠CFO,AO=CO
∴由角角边定理可知△AEO≌△CFO
∴图中阴影部分面积=△BOC的面积
∵O为矩形ABCD的对角线交点
∴由矩形的性质可知:S矩形ABCD=4×S△BOC
∴S△BOC=
1
4
×S矩形ABCD=
1
4
×4×7=7cm2
∴图中阴影部分面积=△BOC的面积=7cm2
故此题应该填:7
考点梳理
全等三角形的应用;矩形的性质.
由矩形的性质可证明△AEO≌△CFO,故图中阴影部分面积=△BOC的面积;
对角线AC、BD的交点为O,由矩形性质可知:矩形的面积=三角形BOC面积的四倍,由此可知三角形BOC的面积,进而求得阴影部分的面积.
本题考查了矩形的性质以及全等三角形的性质和证明,主要是图中各部分面积之间的代换.
计算题.
找相似题