答案
解:(1)作图如图所示:

(2)证明:延长DC交AF于H,显然∠FCH=∠DCE.
在Rt△BCD中,∵CE⊥BD,
∴∠DCE=∠DBC.
∵四边形ABCD是矩形,
∴△DCB≌△CDA,
∴∠DBC=∠CAD,
∴∠FCH=∠CAD,①
又∵AG平分∠BAD=90°,
∴△ABG是等腰直角三角形,

从而易证△HCG也是等腰直角三角形,
∴∠CHG=45°.
∵∠CHG是△CHF的外角,
∴∠CHG=∠CFH+∠FCH=45°,
∴∠CFH=45°-∠FCH.②
由①,②可知∠CFH=45°-∠CAD=∠CAF,
∴CA=CF.
解:(1)作图如图所示:

(2)证明:延长DC交AF于H,显然∠FCH=∠DCE.
在Rt△BCD中,∵CE⊥BD,
∴∠DCE=∠DBC.
∵四边形ABCD是矩形,
∴△DCB≌△CDA,
∴∠DBC=∠CAD,
∴∠FCH=∠CAD,①
又∵AG平分∠BAD=90°,
∴△ABG是等腰直角三角形,

从而易证△HCG也是等腰直角三角形,
∴∠CHG=45°.
∵∠CHG是△CHF的外角,
∴∠CHG=∠CFH+∠FCH=45°,
∴∠CFH=45°-∠FCH.②
由①,②可知∠CFH=45°-∠CAD=∠CAF,
∴CA=CF.