试题
题目:
(2008·临沂)如图,矩形ABCD中,AB=2,BC=3,对角线AC的垂直平分线分别交AD,BC于点E、F,连接CE,则CE的长为
13
6
13
6
.
答案
13
6
解:EF垂直且平分AC,故AE=EC,AO=CO.
所以△AOE≌△COE.
设CE为x.
则DE=AD-x,CD=AB=2.
根据勾股定理可得x
2
=(3-x)
2
+2
2
解得CE=
13
6
.
故答案为
13
6
.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;矩形的性质.
本题首先利用线段垂直平分线的性质推出△AOE≌△COE,再利用勾股定理即可求解.
本题考查的是线段垂直平分线的性质以及矩形的性质.关键是要设所求的量为未知数利用勾股定理求解.
计算题;压轴题.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
(2012·黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )