试题
题目:
(2012·珠海)如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为
5
5
.
答案
5
解:∵四边形OABC是矩形,
∴OA=BC,AB=OC; BA⊥OA,BC⊥OC.
∵B点坐标为(3,2),
∴OA=3,AB=2.
∵D、E、F、G分别是线段OP、AP、BP、CP的中点,
∴DE=GF=1.5; EF=DG=1.
∴四边形DEFG的周长为 (1.5+1)×2=5.
故答案为 5.
考点梳理
考点
分析
点评
三角形中位线定理;坐标与图形性质;矩形的性质.
根据题意,由B点坐标知OA=BC=3,AB=OC=2;根据三角形中位线定理可求四边形DEFG的各边长度,从而求周长.
此题主要考查矩形的性质和三角形中位线定理,理清坐标系内点的坐标与对应相等的长度之间的关系很关键.难度不大.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
(2012·黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )