试题

题目:
过矩形对称中心的任一直线,把矩形分成面积分别为S1,S2的两部分,则(  )



答案
B
青果学院解:矩形ABCD中,AD=BC,
AO=BO=CO=DO,
∴△AOD≌△BOC(SSS),
∵∠ECO=∠FAO,OA=OC,∠EOC=∠FOA,
∴△OEC≌△OFA,
同理可证,△DEO≌△BFO,
∴S1=S2
故选B.
考点梳理
矩形的性质.
根据矩形对角线相等且平分的性质,易证△OEC≌△OFA,△DEO≌△BFO,△AOD≌△BOC,即可证明S1=S2,即可解题.
本题考查了矩形对角线相等且互相平分的性质,全等三角形的证明,全等三角形面积相等的性质,本题中求证△OEC≌△OFA是解题的关键.
计算题.
找相似题