答案

证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠DAE=∠AEB,∠F=∠BAE,
∵AE平分∠BAD,
∴∠DAE=∠BAE,
∴∠F=∠AEB,
∵∠AEB=∠CEF,
∴∠F=∠CEF,
∴CE=CF.
(2)连接BG、CG,
∵四边形ABCD是平行四边形,∠ABC=90°,
∴四边形ABCD是矩形,
∴∠ABE=∠BCD=∠BAD=90°,AB=CD,
∵∠BAE=∠AEB,
∴∠AEB=45°,AB=BE=DC,
∴∠BEG=135°,
∵∠ECF=∠BCD=90°,G为EF中点,CE=CF,
∴CG=EG=FG,CG⊥EF,∠GCE=∠GCF=45°,
∴∠DCG=90°+45°=135°,
∴∠DCG=∠BEG,
在△BEG和△DCG中
∴△BEG≌△DCG,
∴BG=DG,∠BGE=∠DGC,
∵CG⊥EF,
∴∠CGE=90°=∠CGD+∠DGE=∠BGE+∠DGE=∠BGD,
∴∠GDB=∠DBG=45°.

证明:(1)∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠DAE=∠AEB,∠F=∠BAE,
∵AE平分∠BAD,
∴∠DAE=∠BAE,
∴∠F=∠AEB,
∵∠AEB=∠CEF,
∴∠F=∠CEF,
∴CE=CF.
(2)连接BG、CG,
∵四边形ABCD是平行四边形,∠ABC=90°,
∴四边形ABCD是矩形,
∴∠ABE=∠BCD=∠BAD=90°,AB=CD,
∵∠BAE=∠AEB,
∴∠AEB=45°,AB=BE=DC,
∴∠BEG=135°,
∵∠ECF=∠BCD=90°,G为EF中点,CE=CF,
∴CG=EG=FG,CG⊥EF,∠GCE=∠GCF=45°,
∴∠DCG=90°+45°=135°,
∴∠DCG=∠BEG,
在△BEG和△DCG中
∴△BEG≌△DCG,
∴BG=DG,∠BGE=∠DGC,
∵CG⊥EF,
∴∠CGE=90°=∠CGD+∠DGE=∠BGE+∠DGE=∠BGD,
∴∠GDB=∠DBG=45°.