答案
C
解:∵∠1=∠2=∠3=∠4,
∴∠HEF=180°-∠3-∠4,∠FGH=180°-∠1-∠2,
∴∠HEF=∠FGH,
又∵∠EFG=180°-(90°-∠4)-(90°-∠2)=∠2+∠4,
∠EHG=180°-(90°-∠3)-(90°-∠1)=∠1+∠2,
∴∠EFG=∠EHG,
∴四边形EFGH是平行四边形,
易得△BEF≌△DGH,△AEH≌△CGF,
∴HD=BF,BE=DG,
∵∠3=∠4,∠A=∠B=90°,
∴△AEH∽△BEF,
∴
=
,
即
=
,
整理得,
=
,
设AE、AH分别为3k、4k,在Rt△AEH中,EH=
=
=5k,
在Rt△BEF中,EF=
=
=5(1-k),
∴EF+EH=5(1-k)+5k=5,
四边形EFGH的周长=2(EF+EH)=2×5=10.
故选C.