试题
题目:
如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠AEO=( )
A.30°
B.25°
C.22.5°
D.20°
答案
A
解:∵AE平分∠BAD交BC于E,
∴∠AEB=45°,AB=BE,
∵∠CAE=15°,
∴∠ACB=∠AEB-∠CAE=45°-15°=30°,
∴∠BAO=60°,
又∵OA=OB,
∴△BOA是等边三角形,
∴OA=OB=AB,
即OB=AB=BE,
∴△BOE是等腰三角形,且∠OBE=∠OCB=30°,
∴∠BOE=∠BEO=75°,
∴∠AEO=∠BEO-∠ABE=75°-45°=30°,
故选A.
考点梳理
考点
分析
点评
矩形的性质.
先根据AE平分∠BAD交BC于E可得∠AEB=45°,再根据三角形的外角性质求出∠ACB=30°,然后判断出△AOB是等边三角形,从而可以得出△BOE是等腰三角形,然后根据三角形的内角和是180°进行求解即可.
本题考查了矩形的性质,等边三角形的判定及性质,求出∠ACB=30°,然后判断出等边三角是解本题的关键.
找相似题
(2013·重庆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B
1
处,折痕与边BC交于点E,则CE的长为( )
(2013·南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )
(2013·贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S
△BEF
=3S
△DEF
.其中,将正确结论的序号全部选对的是( )
(2012·泰安)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )
(2012·黔东南州)如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为( )