试题

题目:
(2012·西城区模拟)如图,已知在梯形ABCD中,AD∥BC,AB=DC,对角线AC和BD相交于点O,E是BC边上一个动点(E点不与B、C两点青果学院重合),EF∥BD交AC于点F,EG∥AC交BD于点G.
(1)求证:四边形EFOG的周长等于OB的2倍;
(2)请你将上述题目的条件“梯形ABCD中,AD∥BC,AB=DC”改为另一种四边形,其他条件不变,使得结论“四边形EFOG的周长等于OB的2倍”仍成立.你认为应该把梯形ABCD改成
矩形ABCD
矩形ABCD
(不需要证明)
答案
矩形ABCD

青果学院(1)证明:如图
∵四边形ABCD是梯形,AD∥BC,AB=CD,
∴∠ABC=∠DCB.
又∵BC=CB,AB=DC,
∴△ABC≌△DCB.
∴∠1=∠2.
又∵GE∥AC,
∴∠2=∠3.
∴∠1=∠3.
∴EG=BG.
∵EG∥OC,EF∥OB,
∴四边形EGOF是平行四边形.
∴EG=OF,EF=OG.
∴四边形EGOF的周长=2(OG+GE)=2(OG+GB)=2OB

青果学院(2)解:如图,已知矩形ABCD中,对角线AC、BD相交于点O,E为BC上一个动点,(点E不与B、C两点重合)EF∥BD,交AC于点F,EG∥AC交BD于点G,
求证:四边形EFOG的周长等于2OB.
故答案为:矩形ABCD.
考点梳理
梯形;全等三角形的判定与性质;矩形的性质.
(1)很显然四边形OFEG是个平行四边形,那么OF=GE,OG=EF,我们可通过全等三角形ABC和DBC全等得出∠ACB=∠DBC,然后根据GE∥AC,可得出三角形BGE是等腰三角形,那么GE=GB,因此OB=OG+GE而OG=EF,GE=OF,由此可得出四边形EFOG的周长是2OB.
(2)由(1)的解题思路我们可看出,要得到(1)的结论,必须满足的条件应该是三角形ABC和DBC全等,那么AB和CD边必须相等,四边形的对角线必须相等,因此我们可将等腰梯形换成正方形或矩形,就能得出和(1)一样的结论了.
本题主要考查了等腰梯形的性质,平行四边形的性质以及全等三角形的判定和应用等知识点,根据全等三角形来得出角相等是解题的关键.
找相似题