试题
题目:
(2005·北京)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=2EA,CF=2FD.求证:∠BEC=∠CFB.
答案
证明:在梯形ABCD中,
∵AD∥BC,AB=DC,
∴∠ABC=∠DCB(等腰梯形在同一底上的两个角相等),
∵BE=2EA,CF=2FD,
∴BE=
2
3
AB,CF=
2
3
DC,
∴BE=CF,
在△EBC和△FCB中,
BE=CF
∠EBC=∠FCB
BC=CB
∴△EBC≌△FCB,
∴∠BEC=∠CFB.
证明:在梯形ABCD中,
∵AD∥BC,AB=DC,
∴∠ABC=∠DCB(等腰梯形在同一底上的两个角相等),
∵BE=2EA,CF=2FD,
∴BE=
2
3
AB,CF=
2
3
DC,
∴BE=CF,
在△EBC和△FCB中,
BE=CF
∠EBC=∠FCB
BC=CB
∴△EBC≌△FCB,
∴∠BEC=∠CFB.
考点梳理
考点
分析
点评
专题
梯形;全等三角形的判定与性质.
要证明两个角相等,根据已知条件显然可以根据全等三角形的性质进行证明.首先根据等腰梯形的性质得到两个底角相等,再根据已知条件得到线段相等,即可证明△EBC≌△FCB.
本题考查了等腰梯形的性质,此题要求学生熟练运用等腰梯形的性质以及全等三角形的判定和性质.
证明题.
找相似题
(2013·葫芦岛)装有一些液体的长方体玻璃容器,水平放置在桌面上时,液体的深度为6,其正面如图1所示,将容器倾斜,其正面如图2所示.已知液体部分正面的面积保持不变,当AA
1
=4时,BB
1
=( )
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )
(2011·台湾)如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为何?( )