试题

题目:
青果学院如图,直线y=-2x+10与x轴交于点A,又B是该直线上一点,满足OB=OA,
(1)求点B的坐标;
(2)若C是直线上另外一点,满足AB=BC,且四边形OBCD是平行四边形,试画出符合要求的大致图形,并求出点D的坐标.
答案
解:(1)∵直线y=-2x+10与x轴交于点A,
∴当y=0时,x=5,
∴点A坐标为(5,0),OA=5.
设点B坐标为(m,n).
∵B是直线y=-2x+10上一点,
∴n=-2m+10  ①,
又OB=OA,
∴m2+n2=25  ②,
解由①②组成的方程组,得
m=3
n=4
m=5
n=0
(与点A重合,舍去),
∴点B坐标为(3,4);

青果学院(2)符合要求的大致图形如右图所示.
∵四边形OBCD是平行四边形,
∴BC∥OD且BC=OD,
∵AB=BC,
∴AB=OD,
∴四边形OABD是平行四边形,
∴BD∥OA且BD=OA=5,
∴点D(-2,4).
解:(1)∵直线y=-2x+10与x轴交于点A,
∴当y=0时,x=5,
∴点A坐标为(5,0),OA=5.
设点B坐标为(m,n).
∵B是直线y=-2x+10上一点,
∴n=-2m+10  ①,
又OB=OA,
∴m2+n2=25  ②,
解由①②组成的方程组,得
m=3
n=4
m=5
n=0
(与点A重合,舍去),
∴点B坐标为(3,4);

青果学院(2)符合要求的大致图形如右图所示.
∵四边形OBCD是平行四边形,
∴BC∥OD且BC=OD,
∵AB=BC,
∴AB=OD,
∴四边形OABD是平行四边形,
∴BD∥OA且BD=OA=5,
∴点D(-2,4).
考点梳理
一次函数综合题.
(1)先由直线y=-2x+10与x轴交于点A,求出点A坐标为(5,0),所以OA=5;再设点B坐标为(m,n),根据B是直线y=-2x+10上一点,及OB=OA,列出关于m,n的方程组,解方程组即可;
(2)由于四边形OBCD是平行四边形,根据平行四边形的对边平行且相等得出BC∥OD,BC=OD,再由AB=BC,得出AB=OD,根据一组对边平行且相等的四边形是平行四边形证明出四边形OABD是平行四边形,则BD∥OA且BD=OA=5,由平移的性质即可求出点D的坐标.
本题考查了一次函数的综合题,涉及到一次函数图象上点的坐标的求法,二元二次方程组的解法,平行四边形的性质与判定,利用了方程思想及数形结合的思想,(2)中根据平行四边形的性质与判定证明出四边形OABD是平行四边形是解题的关键.
找相似题