题目:

(2008·房山区一模)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:
(1)当△AOC和△BCP全等时,求出t的值;
(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;
(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.
②求出当△PBC为等腰三角形时点P的坐标.
答案
解:(1)△AOC和△BCP全等,则AO=BC=1,
又AB=
,
所以t=AB-BC=
-1;
(2)OC=CP.
证明:过点C作x轴的平行线,交OA与直线BP于点T、H.
∵PC⊥OC,
∴∠OCP=90°,
∵OA=OB=1,
∴∠OBA=45°,
∵TH∥OB,
∴∠BCH=45°,又∠CHB=90°,
∴△CHB为等腰直角三角形,
∴CH=BH,
∵∠AOB=∠OBH=∠BHT=90°,
∴四边形OBHT为矩形,∴OT=BH,

∴OT=CH,
∵∠TCO+∠PCH=90°,
∠CPH+∠PCH=90°,
∴∠TCO=∠CPH,
∵HB⊥x轴,TH∥OB,
∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,
∴△OTC≌△CHP,
∴OC=CP;
(3)①∵△OTC≌△CHP,
∴CT=PH,
∴PH=CT=AT=AC·cos45°=
t,
∴BH=OT=OA-AT=1-
t,
∴BP=BH-PH=1-
t,
∴
b=1-t;(0<t<
)
②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,
PB=BC,则
-t=|1-
t|,
解得t=1或t=-1(舍去),
∴当t=1时,△PBC为等腰三角形,
即P点坐标为:P(1,1-
).
解:(1)△AOC和△BCP全等,则AO=BC=1,
又AB=
,
所以t=AB-BC=
-1;
(2)OC=CP.
证明:过点C作x轴的平行线,交OA与直线BP于点T、H.
∵PC⊥OC,
∴∠OCP=90°,
∵OA=OB=1,
∴∠OBA=45°,
∵TH∥OB,
∴∠BCH=45°,又∠CHB=90°,
∴△CHB为等腰直角三角形,
∴CH=BH,
∵∠AOB=∠OBH=∠BHT=90°,
∴四边形OBHT为矩形,∴OT=BH,

∴OT=CH,
∵∠TCO+∠PCH=90°,
∠CPH+∠PCH=90°,
∴∠TCO=∠CPH,
∵HB⊥x轴,TH∥OB,
∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,
∴△OTC≌△CHP,
∴OC=CP;
(3)①∵△OTC≌△CHP,
∴CT=PH,
∴PH=CT=AT=AC·cos45°=
t,
∴BH=OT=OA-AT=1-
t,
∴BP=BH-PH=1-
t,
∴
b=1-t;(0<t<
)
②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,
PB=BC,则
-t=|1-
t|,
解得t=1或t=-1(舍去),
∴当t=1时,△PBC为等腰三角形,
即P点坐标为:P(1,1-
).