试题
题目:
如图,已知△ABC中∠A=60°,AB=2cm,AC=6cm,点P、Q分别是边AB、AC上的动点,点P从顶点A沿AB以1cm/s的速度向点B运动,同时点Q从顶点C沿CA以3cm/s的速度向点A运动,当点P到达点B时点P、Q都停止运动.设运动的时间为t秒.
(1)当t为何值时AP=AQ;
(2)是否存在某一时刻使得△APQ是直角三角形?若存在,求出t的值;若不存在,请说明理由.
答案
解:(1)由已知得:AP=t,CQ=3t,
∴AQ=6-3t,
∴t=6-3t,解得
t=
3
2
,
∴当
t=
3
2
时,AP=AQ;
(2)存在.分两种情况:
①当∠APQ=90°时,
∵∠A=60°,∴∠AQP=30°,
∴AQ=2AP,即6-3t=2t,解得
t=
6
5
;
②当∠AQP=90°时,
此时∠APQ=30°,
∴AP=2AQ,即t=2(6-3t),解得
t=
12
7
.
综上所述,当
t=
6
5
或
12
7
时△APQ为直角三角形.
解:(1)由已知得:AP=t,CQ=3t,
∴AQ=6-3t,
∴t=6-3t,解得
t=
3
2
,
∴当
t=
3
2
时,AP=AQ;
(2)存在.分两种情况:
①当∠APQ=90°时,
∵∠A=60°,∴∠AQP=30°,
∴AQ=2AP,即6-3t=2t,解得
t=
6
5
;
②当∠AQP=90°时,
此时∠APQ=30°,
∴AP=2AQ,即t=2(6-3t),解得
t=
12
7
.
综上所述,当
t=
6
5
或
12
7
时△APQ为直角三角形.
考点梳理
考点
分析
点评
一次函数综合题.
(1)由AP=AQ可以列出关于t的方程t=6-3t,通过解该方程可以求得t的值;
(2)需要分类讨论:当∠APQ=90°和∠AQP=90°时,利用“30度角所对的直角边等于斜边的一半”列出关于t的方程,通过解方程来求t的值即可.
本题主要考查了等腰三角形的性质,含30度角的直角三角形以及一次函数的综合应用,要注意的是对于动点问题,一定要分类讨论.
找相似题
(2011·日照)在平面直角坐标系中,已知直线y=-
3
4
x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
(2009·宁波)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
(2013·温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为( )秒.
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·泉州模拟)如图,直线
y=
3
x
,点A
1
坐标为(1,0),过点A
1
作x轴的垂线交直线于点B
1
B,以原点O为圆心,OB
1
长为半径画弧交x轴于点A
2
;再过点A
2
作x的垂线交直线于点B
2
,以原点O为圆心,OB
2
长为半径画弧交x轴于点A
3
,…,按此做法进行下去,点A
5
的坐标为( )