试题

题目:
(2009·泉州质检)已知一次函数y=-
3
4
x+m中,当x=0时,y=6.
(1)请直接写出m的值;
(2)设该一次函数的图象分别交x轴、y轴于点A、B若点Q的坐标为(0,4),QE⊥AB于E.
①试求QE的长;
②以Q为圆心,QE为半径作⊙Q,试问在x轴的负半轴上是否存在点P,使得⊙P与⊙Q、直线AB都相切?若存在,请求出圆心P的坐标;若不存在,请说明理由.
答案
解:(1)6;(3分)
青果学院
(2)①如图1,∵OB=6,OQ=4,∴QB=2.
y=-
6
4
x+6
中,令y=0,得x=8,即OA=8.
在Rt△AOB中,由勾股定理,
得:AB=
62+82
=10
.                                               (2分)
连接AQ,∵S△AQB=
1
2
AB·QE=
1
2
BQ·OA

∴10·QE=2×8,解得QE=1.6.                                            (2分)
②若⊙P与⊙Q内切且与直线AB相切.
如图2,由①延长线段EQ交x轴的负半轴于点P,以P为圆心,
PE为半径作⊙P,则⊙P既与⊙Q内切,又与直线AB相切.
在Rt△BQE中,由勾股定理得:EB=
22-1.62
=1.2
.                     (1分)
∵∠BEQ=∠POQ=90°,又∠BQE=∠PQO,
∴△QEB∽△QOP.                                                         (1分)
EQ
OQ
=
EB
OP
1.2
OP
,解得:OP=3.
∴点P的坐标为(-3,0).                                                  (1分)
若⊙P与⊙Q外切且与直线AB相切,设切点分别为C、F.
连接PF、PQ,则点C在PQ上.
青果学院
如图3,设P(x,0)(x<0),则AP=8-x
∵∠AFP=∠AOB=90°,又∠FAP=∠OAB,
∴△AFP∽△AOB.
PF
BO
=
AP
AB
,即
PF
6
=
8-x
10
PF=
3
5
(8-x)=4.8-0.6x
,(1分)
∴PC=PF=4.8-0.6x,
PQ=PC+CQ=4.8-0.6x+1.6=6.4-0.6x.
在Rt△POQ中,由勾股定理,得:PQ2=OP2=OQ2
∴(6.4-0.6x)2=x2+42(1分)
整理得:x2+12x-39=0,
解得:x1=-6+5
3
(不含题意,舍去),x2=-6-5
3

综上,存在符合条件的两个点P,坐标分别为(-3,0)或(-6-5
3
,0).        (1分)
解:(1)6;(3分)
青果学院
(2)①如图1,∵OB=6,OQ=4,∴QB=2.
y=-
6
4
x+6
中,令y=0,得x=8,即OA=8.
在Rt△AOB中,由勾股定理,
得:AB=
62+82
=10
.                                               (2分)
连接AQ,∵S△AQB=
1
2
AB·QE=
1
2
BQ·OA

∴10·QE=2×8,解得QE=1.6.                                            (2分)
②若⊙P与⊙Q内切且与直线AB相切.
如图2,由①延长线段EQ交x轴的负半轴于点P,以P为圆心,
PE为半径作⊙P,则⊙P既与⊙Q内切,又与直线AB相切.
在Rt△BQE中,由勾股定理得:EB=
22-1.62
=1.2
.                     (1分)
∵∠BEQ=∠POQ=90°,又∠BQE=∠PQO,
∴△QEB∽△QOP.                                                         (1分)
EQ
OQ
=
EB
OP
1.2
OP
,解得:OP=3.
∴点P的坐标为(-3,0).                                                  (1分)
若⊙P与⊙Q外切且与直线AB相切,设切点分别为C、F.
连接PF、PQ,则点C在PQ上.
青果学院
如图3,设P(x,0)(x<0),则AP=8-x
∵∠AFP=∠AOB=90°,又∠FAP=∠OAB,
∴△AFP∽△AOB.
PF
BO
=
AP
AB
,即
PF
6
=
8-x
10
PF=
3
5
(8-x)=4.8-0.6x
,(1分)
∴PC=PF=4.8-0.6x,
PQ=PC+CQ=4.8-0.6x+1.6=6.4-0.6x.
在Rt△POQ中,由勾股定理,得:PQ2=OP2=OQ2
∴(6.4-0.6x)2=x2+42(1分)
整理得:x2+12x-39=0,
解得:x1=-6+5
3
(不含题意,舍去),x2=-6-5
3

综上,存在符合条件的两个点P,坐标分别为(-3,0)或(-6-5
3
,0).        (1分)
考点梳理
一次函数综合题.
(1)将x=0代入解析式即可求得m的值;
(2)①连接AQ,将问题转化为三角形的面积问题解答;
②根据切线的性质,构造出直角三角形BEQ和直角三角形APF,然后利用勾股定理解答.
本题考查了一次函数和圆的相关知识,并具有一定的开放性,题目涉及勾股定理,函数图象与坐标系的关系以及相似三角形的性质,内容繁多,结构复杂,是一道难题.
开放型.
找相似题