试题

题目:
青果学院如图:在平面直角坐标系中,矩形ABCD的顶点A的坐标为(4,8),D是OC上一点,且CD:OD=3:5,连接AD,过D点作DE⊥AD交OB于E,过E作EF∥AD,交AB于F
(1)求经过A、D两点的直线解析式;
(2)求EF的长;
(3)在DE所在的直线上是否存在一点P,使AP⊥PE?若存在,则这样的点P有几个?并说明理由;若不存在,请说明理由.
答案
青果学院解:(1)∵A点的坐标是(4,8),
∴CD=AB=8
又∵CD:OD=3:5,
∴OD=5,即D得坐标是(0,5)
设经过A、D两点的直线解析式是y=kx+b(k、b为常数,且k≠0).
根据题意得:
b=5
8=4k+b

解得
b=5
k=
3
4

所以经过A、D两点的直线解析式为:y=
3
4
x+5;

(2)∵∠ACD=90°,∠ADE=90°,
∴∠CAD+∠ADC=∠ADC+∠ODE=90°,
∴∠CAD=∠ODE.
又∵∠ACD=∠DOE=90°,
∴△ACD∽△DOE,
CD
OE
=
AC
OD

∵AC=4,CD=3,OD=5,
∴OE=
CD·OD
AC
=
3×5
4
=
15
4

∴BE=OB-OE=4-
15
4
=
1
4

同理△ACD∽△EBF
AD
EF
=
AC
EB

在直角三角形ACD中,由勾股定理知AD=5,
∴EF=
AD·EB
AC
=
1
4
4
=
5
16
,即EF=
5
16


(3)存在.满足题设的点P有1个.理由如下:
∵点P在直线DE上,AP⊥DE,且AD⊥DE,
∴点P与点D重合,
∴满足题设条件的点P只有1个.
青果学院解:(1)∵A点的坐标是(4,8),
∴CD=AB=8
又∵CD:OD=3:5,
∴OD=5,即D得坐标是(0,5)
设经过A、D两点的直线解析式是y=kx+b(k、b为常数,且k≠0).
根据题意得:
b=5
8=4k+b

解得
b=5
k=
3
4

所以经过A、D两点的直线解析式为:y=
3
4
x+5;

(2)∵∠ACD=90°,∠ADE=90°,
∴∠CAD+∠ADC=∠ADC+∠ODE=90°,
∴∠CAD=∠ODE.
又∵∠ACD=∠DOE=90°,
∴△ACD∽△DOE,
CD
OE
=
AC
OD

∵AC=4,CD=3,OD=5,
∴OE=
CD·OD
AC
=
3×5
4
=
15
4

∴BE=OB-OE=4-
15
4
=
1
4

同理△ACD∽△EBF
AD
EF
=
AC
EB

在直角三角形ACD中,由勾股定理知AD=5,
∴EF=
AD·EB
AC
=
1
4
4
=
5
16
,即EF=
5
16


(3)存在.满足题设的点P有1个.理由如下:
∵点P在直线DE上,AP⊥DE,且AD⊥DE,
∴点P与点D重合,
∴满足题设条件的点P只有1个.
考点梳理
一次函数综合题.
(1)根据A点的坐标是(4,8),则CD=AB=8,再根据CD:OD=3:5,即可求得OD的长.得到D的坐标,利用待定系数法即可求得函数的解析式;
(2)易证△ACD∽△EBF,根据相似三角形的对应边的比相等即可求解.
(3)根据已知条件知点P与点D重合,所以符合条件的点P只有一个.
本题主要考查了一次函数综合题.涉及到的知识点有:相似三角形的判定与性质,勾股定理,待定系数法求一次函数的解析式等.解答(3)题时,需要知道”在同一平面内,过直线外一点作已知直线的垂线有且只有一条“.
压轴题.
找相似题