答案
解:

(1)由 x+y=12得,y=-x+12.
即P(x,y)在y=-x+12的函数图象上,且在第一象限,
过点P作PB⊥x轴,垂足为B.
则 S
△OPA=
OA·PB=
·10·(-x+12)=-5x+60,且0<x<12;
(2)分情况讨论:
①若O为直角顶点,则点P在y轴上,不合题意舍去;
②若A为直角顶点,则PA⊥x轴,所以点P的横坐标为10,代入y=-x+12中,得y=2,
所以点P坐标(10,2);
③若P为直角顶点,可得△OPB∽△PAB.
∴
=.
∴PB
2=OB·AB.
∴(-x+12)
2=x(10-x).
解得
=8, x2=9.
∴点P坐标(8,4)或(9,3).
∴当△OPA为直角三角形时,点P的坐标为(10,2)或(8,4)或(9,3).
解:

(1)由 x+y=12得,y=-x+12.
即P(x,y)在y=-x+12的函数图象上,且在第一象限,
过点P作PB⊥x轴,垂足为B.
则 S
△OPA=
OA·PB=
·10·(-x+12)=-5x+60,且0<x<12;
(2)分情况讨论:
①若O为直角顶点,则点P在y轴上,不合题意舍去;
②若A为直角顶点,则PA⊥x轴,所以点P的横坐标为10,代入y=-x+12中,得y=2,
所以点P坐标(10,2);
③若P为直角顶点,可得△OPB∽△PAB.
∴
=.
∴PB
2=OB·AB.
∴(-x+12)
2=x(10-x).
解得
=8, x2=9.
∴点P坐标(8,4)或(9,3).
∴当△OPA为直角三角形时,点P的坐标为(10,2)或(8,4)或(9,3).