一次函数综合题.
(1)因为S△FAE:S四边形AOCE=1:3,所以可得S△FAE:S△FOC=1:4,利用四边形AOCB是正方形,可得AB∥OC,△FAE∽△FOC,利用相似三角形的面积比等于相似比的平方,可得到AE:OC=1:2,结合正方形的边长即可求出AE=3,所以点E的坐标是(3,6);
(2)可设直线EC的解析式是y=kx+b,因为直线y=kx+b过E(3,6)和C(6,0),利用待定系数法即可求出直线EC的解析式.
本题需利用待定系数法和相似三角形的性质来解决问题,另外本题也是一道综合性较强的题目,解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
代数几何综合题.