试题
题目:
如图,把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得
到折痕EF.
(1)可以通过
旋转
旋转
办法,使四边形AEFO变到四边形BEFC的位置(填“平移”、“旋转”或“翻转”);
(2)写出点E在坐标系中的位置即点E的坐标
(6,1.75)
(6,1.75)
;
(3)折痕EF的长为
7.5
7.5
;
(4)若直线l把矩形OABC的面积分成相等的两部分,则直线l必经过点
(3,4)
(3,4)
,写出经过这点的任意一条直线的函数关系式
y=
4
3
x
y=
4
3
x
.
答案
旋转
(6,1.75)
7.5
(3,4)
y=
4
3
x
解:设EF与OB相交于点N,
由题意折叠
∴EF⊥OB,ON=NB,
又∵矩形OABC,
∴AB∥OC,
∴∠OFE=∠BEF,又∠FNO=∠ENB,ON=BN,
∴△OFN≌△EBN,
∴FN=EN,OF=BE,
∵四边形OABC是矩形
∴∠FOB=∠OBA
∴△OFN∽△OAB
∴
ON
AB
=
NF
OA
又∵知道AB=8,OA=6
∴FN=3.75
∴EF=7.5
∴OF=BE=6.25
∴AE=8-6.25=1.75
∵点E在第一象限内
∴点E(6,1.75);
由题意知直线L必经过矩形的对角线交点
则由题意其交点坐标横坐标为矩形宽的一半即为3,纵坐标为矩形长的一半为4.
即由题意一条直线经过原点即设为y=kx
代入(3,4)得y=
4
3
x.
考点梳理
考点
分析
点评
专题
一次函数综合题;翻折变换(折叠问题).
由折叠后的已知条件可以证得△ONF∽△OAB代入已知条件从而解得.
本题考查了一次函数的应用,通过折叠后所得到的已知条件从而解得.
计算题.
找相似题
(2011·日照)在平面直角坐标系中,已知直线y=-
3
4
x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
(2009·宁波)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
(2013·温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为( )秒.
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·泉州模拟)如图,直线
y=
3
x
,点A
1
坐标为(1,0),过点A
1
作x轴的垂线交直线于点B
1
B,以原点O为圆心,OB
1
长为半径画弧交x轴于点A
2
;再过点A
2
作x的垂线交直线于点B
2
,以原点O为圆心,OB
2
长为半径画弧交x轴于点A
3
,…,按此做法进行下去,点A
5
的坐标为( )