试题
题目:
如图直线·:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(-8,0),点A的坐标为(-6,0)
(1)求k的值.
(2)若P(x,y)是直线·在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.
(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.
答案
解:(1)将B(-8,0)代入y=kx+6中,得-8k+6=0,解得k=
3
4
;
(2)由(1)得y=
3
4
x+6,又OA=6,
∴S=
1
2
×6×y=
9
4
x+18,(-8<x<0);
(3)当S=9时,
9
4
x+18=9,解得x=-4,
此时y=
3
4
x+6=3,
∴P(-4,3).
解:(1)将B(-8,0)代入y=kx+6中,得-8k+6=0,解得k=
3
4
;
(2)由(1)得y=
3
4
x+6,又OA=6,
∴S=
1
2
×6×y=
9
4
x+18,(-8<x<0);
(3)当S=9时,
9
4
x+18=9,解得x=-4,
此时y=
3
4
x+6=3,
∴P(-4,3).
考点梳理
考点
分析
点评
专题
一次函数综合题;待定系数法求一次函数解析式;三角形的面积.
(1)将B点坐标代入y=kx+6中,可求k的值;
(2)用OA的长,y分别表示△OPA的底和高,用三角形的面积公式求S与x的函数关系式;
(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置.
本题考查了一次函数的综合运用,待定系数法求一次函数解析式,三角形面积的求法.关键是将面积问题转化为线段的长,点的坐标来表示.
动点型.
找相似题
(2011·日照)在平面直角坐标系中,已知直线y=-
3
4
x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
(2009·宁波)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
(2013·温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为( )秒.
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·泉州模拟)如图,直线
y=
3
x
,点A
1
坐标为(1,0),过点A
1
作x轴的垂线交直线于点B
1
B,以原点O为圆心,OB
1
长为半径画弧交x轴于点A
2
;再过点A
2
作x的垂线交直线于点B
2
,以原点O为圆心,OB
2
长为半径画弧交x轴于点A
3
,…,按此做法进行下去,点A
5
的坐标为( )