题目:
(1)如图1,点M是正方形ABCD内一定点,请你在图1中过点M作一条直线,使它将矩形ABCD分成相等的两部分.(只需保留作图痕迹)
(2)如图2,在平面直角坐标系中,直角梯形OBCD是我市城东新区开发用地示意图,其中DC∥OB,OB=8,BC=6,CD=6.新区管委会(其占地面积不计)设在点P(5,3)处,为了方便驻区单位,准备过点P修一条笔直的道路(路的宽度不计),并且使这条路所在的直线L将直角梯形OBCD分成面积相等的两部分,你认为直线L是否存在?若存在,求出直线L的表达式;若不存在,请说明理由.
答案

解:(1)如图②连接AC、BD交于O则O为正方形对称中心.
作直线MO,直线MO即为所求.
(2)如图③存在直线l,
过点D的直线作DA⊥OB于点A,
则点P(5,3)为矩形ABCD的对称中心,
∴过点P的直线只要平分△DOA的面积即可,
易知,在OD边上必存在点H使得PH将△DOA面积平分.
从而,直线PH平分梯形OBCD的面积,即直线PH为所求直线l
设直线PH的表达式为y=kx+b且点P(5,3),
∴3=5k+b即b=3-5k,
∴y=kx+3-5k,
∵直线OD的表达式为y=3x,
∴
,
解之
.
∴点H的坐标为(x=
,y=
)
把x=2代入直线PH的解析式y=kx+3-5k,得y=3-k,
∴PH与线段AD的交点F(2,3-k),
∴0<3-k<6,
∴-3<k<3.
∴S
△DHF=
[6-(3-k)·(2-
)=
×
×2×6,
∴解得:k=-3+2
.(k=-3-2
舍去)
∴b=3-5k=18-10
,
∴直线l的表达式为:y=(-3+2
)x+18-10
.

解:(1)如图②连接AC、BD交于O则O为正方形对称中心.
作直线MO,直线MO即为所求.
(2)如图③存在直线l,
过点D的直线作DA⊥OB于点A,
则点P(5,3)为矩形ABCD的对称中心,
∴过点P的直线只要平分△DOA的面积即可,
易知,在OD边上必存在点H使得PH将△DOA面积平分.
从而,直线PH平分梯形OBCD的面积,即直线PH为所求直线l
设直线PH的表达式为y=kx+b且点P(5,3),
∴3=5k+b即b=3-5k,
∴y=kx+3-5k,
∵直线OD的表达式为y=3x,
∴
,
解之
.
∴点H的坐标为(x=
,y=
)
把x=2代入直线PH的解析式y=kx+3-5k,得y=3-k,
∴PH与线段AD的交点F(2,3-k),
∴0<3-k<6,
∴-3<k<3.
∴S
△DHF=
[6-(3-k)·(2-
)=
×
×2×6,
∴解得:k=-3+2
.(k=-3-2
舍去)
∴b=3-5k=18-10
,
∴直线l的表达式为:y=(-3+2
)x+18-10
.