试题
题目:
如图,在平面直角坐标系xOy中,我们把由两条射线AE、BF和以AB为直径的半圆所组成的图形叫作图形C.已知A(-1,0),B(1,0),AE∥BF,且半圆与y轴的交点D在射线AE的反向延长线上,当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是
b=
2
或-1<b<1
b=
2
或-1<b<1
.
答案
b=
2
或-1<b<1
解:如图,分别连接AD、DB,则点D在直线AE上,
∵点D在以AB为直径的半圆上,
∴∠ADB=90°,
∴BD⊥AD,
在Rt△DOB中,由勾股定理得,BD=
2
,
∵AE∥BF,
∴两条射线AE、BF所在直线的距离为
2
,
则当一次函数y=x+b的图象与图形C恰好只有一个公共点时,b的取值范围是b=
2
或-1≤b<1.
故答案为:b=
2
或-1<b<1.
考点梳理
考点
分析
点评
一次函数综合题.
利用直径所对的圆周角是直角,从而判定三角形ADB为等腰直角三角形,其直角边的长等于两直线间的距离,可利用数形结合的方法得到当直线与图形C有一个交点时自变量x的取值范围.
本题是一道一次函数的综合题,题目中还涉及到了勾股定理、等腰直角三角形的性质及圆周角定理的相关知识,题目中还渗透了数形结合思想.
找相似题
(2011·日照)在平面直角坐标系中,已知直线y=-
3
4
x+3与x轴、y轴分别交于A、B两点,点C(0,n)是y轴正半轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是( )
(2009·宁波)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
(2013·温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为( )秒.
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·泉州模拟)如图,直线
y=
3
x
,点A
1
坐标为(1,0),过点A
1
作x轴的垂线交直线于点B
1
B,以原点O为圆心,OB
1
长为半径画弧交x轴于点A
2
;再过点A
2
作x的垂线交直线于点B
2
,以原点O为圆心,OB
2
长为半径画弧交x轴于点A
3
,…,按此做法进行下去,点A
5
的坐标为( )