试题

题目:
(2011·白下区二模)某房地产开发公司计划建A、B两种户型的经济适用住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:
  A B
成本(万元/套) 25 28
售价(万元/套) 30 34
(1)该公司对这两种户型住房有哪几种建房方案?
(2)若该公司所建的两种户型住房可全部售出,则采取哪一种建房方案获得利润最大?
(3)根据市场调查,每套A型住房的售价不会改变,每套B型住房的售价将会降低a万元(0<a<6),且所建的两种户型住房可全部售出,该公司又将如何建房获得利润最大?
答案
解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.
根据题意,得
25x+28(80-x)≥2090
25x+28(80-x)≤2096

解得48≤x≤50.
∵x取非负整数,
∴x为48,49,50.
∴有三种建房方案:
方案① 方案② 方案③
A型 48套 49套 50套
B型 32套 31套 30套

(2)设该公司建房获得利润W万元.
由题意知:W=5x+6(80-x)=480-x,
∵k=-1,W随x的增大而减小,
∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大.

(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a.
∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套.
当a=l时,a-1=0,三种建房方案获得利润相等.
当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套.
解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套.
根据题意,得
25x+28(80-x)≥2090
25x+28(80-x)≤2096

解得48≤x≤50.
∵x取非负整数,
∴x为48,49,50.
∴有三种建房方案:
方案① 方案② 方案③
A型 48套 49套 50套
B型 32套 31套 30套

(2)设该公司建房获得利润W万元.
由题意知:W=5x+6(80-x)=480-x,
∵k=-1,W随x的增大而减小,
∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大.

(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a.
∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套.
当a=l时,a-1=0,三种建房方案获得利润相等.
当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套.
考点梳理
一次函数的应用;一元一次不等式组的应用.
(1)首先设A种户型的住房建x套,则B种户型的住房建(80-x)套,然后根据题意列方程组,解方程组可求得x的取值范围,又由x取非负整数,即可求得x的可能取值,则可得到三种建房方案;
(2)设该公司建房获得利润W万元,根据题意可得W与x的一次函数关系式,则可求得何时获得利润最大;
(3)与(2)类似,首先求得W与x函数关系式,再由a的取值,即可确定如何建房获得利润最大.
此题考查了二元一次方程组与一次函数的实际应用.解题的关键是理解题意,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.
找相似题