试题
题目:
雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获得的总利润为y元.
(1)请帮雅美服装厂设计出生产方案;
(2)求y(元)与x(套)的函数关系,利用一次函数性质,选出(1)中哪个方案所获利润最大?最大利润是多少?
答案
解:(1)设生产N型号的时装套数为x,则生产M型号的时装为(80-x),由题意,得
0.6(80-x)+1.1x≤70
0.9(80-x)+0.4x≤52
,
解得:40≤x≤44.
∵x为整数,
∴x取40,41,42,43,44.
∴有5种方案:
方案1:M型号40套,N型号40套;
方案2:M型号39套,N型号41套;
方案3:M型号38套,N型号42套;
方案4:M型号37套,N型号43套;
方案5:M型号36套,N型号44套;
(2)由题意,得
y=45(80-x)+50x=5x+3600.
∵k=5>0,
∴y随x的增大而增大,
∴当x=44时,y
最大
=3820元.
∴选择方案5所获利润最大.
解:(1)设生产N型号的时装套数为x,则生产M型号的时装为(80-x),由题意,得
0.6(80-x)+1.1x≤70
0.9(80-x)+0.4x≤52
,
解得:40≤x≤44.
∵x为整数,
∴x取40,41,42,43,44.
∴有5种方案:
方案1:M型号40套,N型号40套;
方案2:M型号39套,N型号41套;
方案3:M型号38套,N型号42套;
方案4:M型号37套,N型号43套;
方案5:M型号36套,N型号44套;
(2)由题意,得
y=45(80-x)+50x=5x+3600.
∵k=5>0,
∴y随x的增大而增大,
∴当x=44时,y
最大
=3820元.
∴选择方案5所获利润最大.
考点梳理
考点
分析
点评
一次函数的应用;一元一次不等式组的应用.
(1)设生产N型号的时装套数为x,则生产M型号的时装为(80-x),根据条件建立不等式组求出其解即可;
(2)根据总利润=M型号的利润+N型号的利润求出其解析式,然后再根据解析式的性质求出结论.
本题考查了一次函数的解析式的性质的运用,列一元一次不等式组解实际问题的运用及一元一次不等式组的解法的运用,设计方案的运用,解答时求出一次函数的解析式是关键.
找相似题
(2013·威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l
1
,l
2
分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
(2013·十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是( )
(2013·南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了20km;
(2)小陆全程共用了1.5h;
(3)小李与小陆相遇后,小李的速度小于小陆的速度;
(4)小李在途中停留了0.5h.
其中正确的有( )
(2010·台湾)将装有牛奶250毫升的玻璃杯放在已归零的磅秤上,测得重量为500克.若喝掉一些牛奶后,以x毫升表示杯中牛奶的体积,y公克表示磅秤测得的重量,则下列哪一个图形可以表示x、y的关系( )
(2006·曲靖)一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是( )