试题
题目:
(2012·三明)某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.
(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?
(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?
答案
解:(1)解法一:设A种商品销售x 件,
则B种商品销售(100-x)件.
依题意,得 10x+15(100-x)=1350
解得x=30.∴100-x=70.
答:A种商品销售30件,B种商品销售70件.
解法二:设A种商品销售x 件,B种商品销售y件.
依题意,得
x+y=100
10x+15y=1350.
解得
x=30
y=70.
答:A种商品销售30件,B种商品销售70件.
(2)设A种商品购进a件,则B种商品购进(200-a)件.
依题意,得0≤200-a≤3a
解得 50≤a≤200
设所获利润为w元,则有
w=10a+15(200-a)=-5a+3000
∵-5<0,
∴w随a的增大而减小.
∴当a=50时,所获利润最大
W
最大
=-5×50+3000=2750元.
200-a=150.
答:应购进A种商品50件,B种商品150件,
可获得最大利润为2750元.
解:(1)解法一:设A种商品销售x 件,
则B种商品销售(100-x)件.
依题意,得 10x+15(100-x)=1350
解得x=30.∴100-x=70.
答:A种商品销售30件,B种商品销售70件.
解法二:设A种商品销售x 件,B种商品销售y件.
依题意,得
x+y=100
10x+15y=1350.
解得
x=30
y=70.
答:A种商品销售30件,B种商品销售70件.
(2)设A种商品购进a件,则B种商品购进(200-a)件.
依题意,得0≤200-a≤3a
解得 50≤a≤200
设所获利润为w元,则有
w=10a+15(200-a)=-5a+3000
∵-5<0,
∴w随a的增大而减小.
∴当a=50时,所获利润最大
W
最大
=-5×50+3000=2750元.
200-a=150.
答:应购进A种商品50件,B种商品150件,
可获得最大利润为2750元.
考点梳理
考点
分析
点评
专题
一次函数的应用;一元一次方程的应用;二元一次方程组的应用;一元一次不等式组的应用.
(1)设A种商品销售x 件,B种商品销售y件,根据“销售A,B两种商品共100件,获利润1350元”列出二元一次方程组求解即可;
(2)设A种商品购进a件,则B种商品购进(200-a)件,根据“B种商品的件数不多于A种商品件数的3倍”列出不等式即可求得结果.
本题考查了一次函数的应用、一元一次方程的应用、二元一次方程组的应用及一元一次不等式的应用,考查的知识点比较多,难度较大.
应用题.
找相似题
(2013·威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l
1
,l
2
分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是( )
(2013·十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是( )
(2013·南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:
(1)他们都行驶了20km;
(2)小陆全程共用了1.5h;
(3)小李与小陆相遇后,小李的速度小于小陆的速度;
(4)小李在途中停留了0.5h.
其中正确的有( )
(2010·台湾)将装有牛奶250毫升的玻璃杯放在已归零的磅秤上,测得重量为500克.若喝掉一些牛奶后,以x毫升表示杯中牛奶的体积,y公克表示磅秤测得的重量,则下列哪一个图形可以表示x、y的关系( )
(2006·曲靖)一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是( )