试题

题目:
(2013·普洱)在茶节期间,某茶商订购了甲种茶叶90吨,乙种茶叶80吨,准备用A、B两种型号的货车共20辆运往外地.已知A型货车每辆运费为0.4万元,B型货车每辆运费为0.6万元.
(1)设A型货车安排x辆,总运费为y万元,写出y与x的函数关系式;
(2)若一辆A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨.按此要求安排A、B两种型号货车一次性运完这批茶叶,共有哪几种运输方案?
(3)说明哪种方案运费最少?最少运费是多少万元?
答案
解:(1)设A种货车为x辆,则B种货车为(20-x)辆.
根据题意,得y=0.4x+0.6(20-x)=-0.2x+12;

(2)由题意得
6x+3(20-x)≥90
2x+7(20-x)≥80

解得10≤x≤12.
又∵x为正整数,
∴x=10,11,12,
∴10-x=10,9,8.
∴有以下三种运输方案:
①A型货车10辆,B型货车10辆;
②A型货车11辆,B型货车9辆;
③A型货车12辆,B型货车8辆.

(3)∵方案①运费:10×0.4+10×0.6=10(万元);
方案②运费:11×0.4+9×0.6=9.8(万元);
方案③运费:12×0.4+8×0.6=9.6(万元).
∴方案③运费最少,最少运费为9.6万元.
解:(1)设A种货车为x辆,则B种货车为(20-x)辆.
根据题意,得y=0.4x+0.6(20-x)=-0.2x+12;

(2)由题意得
6x+3(20-x)≥90
2x+7(20-x)≥80

解得10≤x≤12.
又∵x为正整数,
∴x=10,11,12,
∴10-x=10,9,8.
∴有以下三种运输方案:
①A型货车10辆,B型货车10辆;
②A型货车11辆,B型货车9辆;
③A型货车12辆,B型货车8辆.

(3)∵方案①运费:10×0.4+10×0.6=10(万元);
方案②运费:11×0.4+9×0.6=9.8(万元);
方案③运费:12×0.4+8×0.6=9.6(万元).
∴方案③运费最少,最少运费为9.6万元.
考点梳理
一次函数的应用;一元一次不等式组的应用.
(1)设A种货车为x辆,则B种货车为(20-x)辆,则表示出两种车的费用的和就是总费用,据此即可求解;
(2)仓库有甲种茶叶90吨,A型货车可装甲种茶叶6吨,乙种茶叶2吨;一辆B型货车可装甲种茶叶3吨,乙种茶叶7吨,据此即可得到一个关于x的不等式组,再根据x是整数,即可求得x的值,从而确定运输方案;
(3)运费可以表示为x的函数,根据函数的性质,即可求解.
本题考查了二元一次方程组的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程组和不等式组即可求解.
找相似题