试题
题目:
两条直线y=mx+n和y=kx+b相交于(-3,2),并且分别经过点(-
3
2
,3)和(1,-2),那么这两条直线与y轴围成的三角形的面积等于
7.5
7.5
.
答案
7.5
解:把(-3,2)、(-
3
2
,3)代入y=mx+n
-3m+n=2
-
3
2
m+n=3
,解得
m=
2
3
n=4
,
所以y=
2
3
x+4,当x=0,y=4,即直线y=
2
3
x+4与y轴的交点坐标为(0,4);
把(-3,2)、(1,-2)代入y=kx+b得
-3k+b=2
k+b=-2
,解得
k=-1
b=-1
,
所以y=-x-1,当x=0,y=-1,即直线y=-x-1与y轴的交点坐标为(0,-1),
所以这两条直线与y轴围成的三角形的面积=
1
2
×(4+1)×3=7.5.
故答案为7.5.
考点梳理
考点
分析
点评
专题
两条直线相交或平行问题.
先根据待定系数法求函数的解析式求出两函数解析式,再分别确定两直线与y轴的交点坐标,然后根据三角形面积公式计算.
本题考查了两直线平行或相交的问题:直线y=k
1
x+b
1
(k
1
≠0)和直线y=k
2
x+b
2
(k
2
≠0)平行,则k
1
=k
2
;若直线y=k
1
x+b
1
(k
1
≠0)和直线y=k
2
x+b
2
(k
2
≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
计算题.
找相似题
(2003·台湾)如图所示,在坐标平面上,L
1
为y=f(x)的一次函数图形,L
2
为y=g(x)的一次函数图形,L
1
、L
2
相交于P(3,3).若a>3,则下列叙述何者正确( )
(2001·河南)已知一次函数y=2x+a,y=-x+b的图象都经过A(-2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
(2013·德惠市一模)如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=-x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积( )
(2013·长清区二模)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于( )
(2012·乐陵市二模)如图,在平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(3,1),若直线y=kx-2与线段AB有交点,则k的值可能是( )