试题

题目:
青果学院如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6.
(1)求点C的坐标.
(2)当x取何值时y1>y2
(3)求△COB的面积.
答案
解:(1)解方程组
y=x
y=-2x+6
x=2
y=2

所以C点坐标为(2,2);

(2)当x>2时y1>y2

(3)对于y=-2x+6,令y=0,则-2x+6=0,解得x=3,
所以B点坐标为(3,0),
所以△COB的面积=
1
2
×3×2=3.
解:(1)解方程组
y=x
y=-2x+6
x=2
y=2

所以C点坐标为(2,2);

(2)当x>2时y1>y2

(3)对于y=-2x+6,令y=0,则-2x+6=0,解得x=3,
所以B点坐标为(3,0),
所以△COB的面积=
1
2
×3×2=3.
考点梳理
两条直线相交或平行问题.
(1)解由两直线的解析式y=x和y=-2x+6所组成的方程组即可得到C点坐标;
(2)观察函数图象得到当x>3时,函数y1=x的图象都在函数y2=-2x+6的图象的上方,即有y1>y2
(3)先利用y2=-2x+6求出B点坐标,得到OB的长,而△COB的OB边上的高等于C点的纵坐标,然后利用三角形面积公式即可.
本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.也考查了观察图象的能力.
计算题.
找相似题