试题
题目:
求直线y=2x+3与直线y=-x+6的交点坐标,并求出两直线与x轴所围成的三角形的面积.
答案
解:∵直线y=2x+3与直线y=-x+6相交,
∴2x+3=-x+6,
解得:x=1,
把x=1代入y=-x+6中得:
y=-1+6=5,
∴直线y=2x+3与直线y=-x+6的交点坐标是:(1,5),
S
△ABE
=
1
2
×BE×5=
1
2
×7.5×5=
75
4
.
解:∵直线y=2x+3与直线y=-x+6相交,
∴2x+3=-x+6,
解得:x=1,
把x=1代入y=-x+6中得:
y=-1+6=5,
∴直线y=2x+3与直线y=-x+6的交点坐标是:(1,5),
S
△ABE
=
1
2
×BE×5=
1
2
×7.5×5=
75
4
.
考点梳理
考点
分析
点评
两条直线相交或平行问题.
两直线相交时,y值相等,故可得2x+3=-x+6,解得x的值后再把x值代入任何一个解析式都可得到y的值,即可得到交点坐标;画出两函数图象,根据所画的图象,可知两直线与x轴所围成的三角形,求出△ABE的面积即可.
此题主要考查了画一次函数图象,求两直线交点坐标以及求三角形面积问题,画一次函数y=kx+b图象根据两点(0,b)(-
b
k
,0)即可;此题易错点在求两直线与x轴所围成的三角形的面积上,很多同学只求△ABE的面积,而漏掉了△ACD的面积.
找相似题
(2003·台湾)如图所示,在坐标平面上,L
1
为y=f(x)的一次函数图形,L
2
为y=g(x)的一次函数图形,L
1
、L
2
相交于P(3,3).若a>3,则下列叙述何者正确( )
(2001·河南)已知一次函数y=2x+a,y=-x+b的图象都经过A(-2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
(2013·德惠市一模)如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=-x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积( )
(2013·长清区二模)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于( )
(2012·乐陵市二模)如图,在平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(3,1),若直线y=kx-2与线段AB有交点,则k的值可能是( )