待定系数法求一次函数解析式;一次函数的图象;两条直线相交或平行问题.
(1)设直线解析式为y=kx+b(k≠0),将已知两点的坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的值,确定出直线的解析式,分别令直线解析式中y=0和x=0,求出对应的x与y的值,即可得到A和B的坐标;
(2)根据(1)求出的解析式,画出直线的图象,利用图象即可得到y大于0时x的范围;
(3)将y=-3x-1与求出的直线解析式联立组成方程组,求出方程组的解确定出C的坐标,再令y=-3x-1中x=0,求出对应的y值,确定出D的坐标,进而确定出CE与BD的长,利用三角形的面积公式即可求出三角形BCD的面积.
此题考查了利用待定系数法求一次函数解析式,一次函数与坐标轴的交点,坐标与图形性质,以及两直线的交点,利用了数形结合的思想,灵活运用待定系数法是解本题的关键.
计算题;数形结合.