试题
题目:
在平面直角坐标系中,已知一条直线与正比例函数y=-2x的图象平行,并且该直线经过点P(1,2).
(1)求这条直线的函数解析式;
(2)在下面的平面直角坐标系中,作出这条直线和正比例函数y=-2x的图象.
答案
解:(1)设直线的解析式为y=kx+b,
∵一条直线y=kx+b与正比例函数y=-2x的图象平行,
∴k=-2,
∴y=-2x+b,
把P(1,2)代入得-2×1+b=2,解得b=4,
∴直线的解析式为y=-2x+4.
(2)如图:
解:(1)设直线的解析式为y=kx+b,
∵一条直线y=kx+b与正比例函数y=-2x的图象平行,
∴k=-2,
∴y=-2x+b,
把P(1,2)代入得-2×1+b=2,解得b=4,
∴直线的解析式为y=-2x+4.
(2)如图:
考点梳理
考点
分析
点评
专题
两条直线相交或平行问题.
(1)先设直线的解析式为y=kx+b,根据两直线平行的问题得到k=-2,然后把P点坐标代入,可确定b的值;
(2)利用两点确定一直线画函数图象.
本题考查了两直线平行或相交的问题:直线y=k
1
x+b
1
(k
1
≠0)和直线y=k
2
x+b
2
(k
2
≠0)平行,则k
1
=k
2
;若直线y=k
1
x+b
1
(k
1
≠0)和直线y=k
2
x+b
2
(k
2
≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
计算题.
找相似题
(2003·台湾)如图所示,在坐标平面上,L
1
为y=f(x)的一次函数图形,L
2
为y=g(x)的一次函数图形,L
1
、L
2
相交于P(3,3).若a>3,则下列叙述何者正确( )
(2001·河南)已知一次函数y=2x+a,y=-x+b的图象都经过A(-2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
(2013·德惠市一模)如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=-x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积( )
(2013·长清区二模)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于( )
(2012·乐陵市二模)如图,在平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(3,1),若直线y=kx-2与线段AB有交点,则k的值可能是( )