试题

题目:
已知直线y=x+3与y轴交于点A,又与正比例函数y=kx的图象交于点B(-1,m)
①求点A的坐标;
②确定m的值;
③求正比例函数的解析式;
④计算△AOB的面积(O为坐标系原点).
答案
解:①当x=0时,y=3,
则A(0,3);

②∵直线y=x+3经过B(-1,m),
∴m=-1+3=2,

③∵m=2,
∴B(-1,2),
∵正比例函数y=kx的图象过点(-1,2),
∴-k=2,解得k=-2,
∴正比例函数的解析式为y=-2x;

④△AOB的面积:
1
2
×3×2=3.
解:①当x=0时,y=3,
则A(0,3);

②∵直线y=x+3经过B(-1,m),
∴m=-1+3=2,

③∵m=2,
∴B(-1,2),
∵正比例函数y=kx的图象过点(-1,2),
∴-k=2,解得k=-2,
∴正比例函数的解析式为y=-2x;

④△AOB的面积:
1
2
×3×2=3.
考点梳理
两条直线相交或平行问题.
①计算出当x=0时,计算出函数y=x+3中得y的值;
②把B(-1,m)代入y=x+3即可算出m的值;
③把B点代入正比例函数解析式可得k的值;
④根据A、B两点坐标可得△AOB的面积.
此题主要考查了待定系数法求函数解析式,关键是掌握函数图象经过的点必能满足解析式.
找相似题