试题
题目:
直线y=kx+2中,k取不同的值得到不同的直线,这些直线必定( )
A.相交于同一点
B.可能多于一个交点
C.互相平行
D.没有确定的位置关系
答案
A
解:∵x=0时,y=2,
∴k取不同的值得到不同的直线时都经过点(0,2).
故选A.
考点梳理
考点
分析
点评
专题
两条直线相交或平行问题.
由于x=0时,y=2,则当k取不同的值得到不同的直线时都经过点(0,2).
本题考查了两条直线相交或平行问题:若直线y=k
1
x+b
1
与直线y=k
2
x+b
2
平行,则k
1
=k
2
;若直线y=k
1
x+b
1
与直线y=k
2
x+b
2
相交,则由两解析式所组成的方程组的解为交点坐标.
计算题.
找相似题
(2003·台湾)如图所示,在坐标平面上,L
1
为y=f(x)的一次函数图形,L
2
为y=g(x)的一次函数图形,L
1
、L
2
相交于P(3,3).若a>3,则下列叙述何者正确( )
(2001·河南)已知一次函数y=2x+a,y=-x+b的图象都经过A(-2,0),且与y轴分别交于B、C两点,则△ABC的面积为( )
(2013·德惠市一模)如图,点A、B的坐标分别为(1,0)、(0,1),点P是第一象限内直线y=-x+3上的一个动点,当点P的横坐标逐渐增大时,四边形OAPB的面积( )
(2013·长清区二模)如果函数y=ax+b(a<0,b>0)和y=kx(k>0)的图象交于点P,那么点P应该位于( )
(2012·乐陵市二模)如图,在平面直角坐标系中,线段AB的端点坐标为A(-1,2),B(3,1),若直线y=kx-2与线段AB有交点,则k的值可能是( )