试题
题目:
如图,Rt△ABC中∠C=90°,两直角边长分别是3、4,直线DE分别交直角边AC、BC于D、E,将△CDE沿DE折叠,点C落在点C′处,且点C′在△ABC的外部,CD、CE分别与AB相交于点F、G,则△ADF、△C′FG、△EGB的周长之和是
12
12
.
答案
12
解:在Rt△ABC中,AC=4,BC=3;
由勾股定理得:AB=
A
C
2
+B
C
2
=5;
∵CD=C′D,EC′=EC,
∴△ADF、△C′FG、△EGB的周长之和=DF+FC′+AD+AF+DE+BG+BE+EG+GC′=AB+AC+BC=3+4+5=12.
故答案为:12.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
在Rt△ABC中,根据勾股定理可求出斜边AB的长;由图知△ADF、△C′FG、△EGB的周长之和等于△ABC的周长,由此得解.
此题考查了折叠的性质,能够根据折叠的性质发现△ADF、△C′FG、△EGB的周长之和等于△ABC的周长是解答此题的关键.
压轴题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )