试题
题目:
把矩形ABCD沿EF对折后使两部分叠合,如图.若∠AEF=110°,则∠1=
40°
40°
.
答案
40°
解:如图,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠AEF+∠3=180°,
∴∠3=180°-110°=70°,
∵矩形ABCD沿EF对折后使两部分叠合,
∴∠2=∠3=70°,
∴∠1=180°-∠2-∠3=40°.
故答案为40°.
考点梳理
考点
分析
点评
专题
平行线的性质;翻折变换(折叠问题).
根据矩形性质得四边形ABCD为矩形得AD∥BC,再根据平行线的性质得∠AEF+∠3=180°,则可计算出∠3=70°,然后根据折叠的性质得到∠2=∠3=70°,
再利用平角的定义可计算出∠1.
本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了折叠的性质.
计算题.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )