试题
题目:
(2013·德城区二模)如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点A落在点F处,折痕为MN,则线段CN的长度为
3cm
3cm
.
答案
3cm
解:由题意设CN=x cm,则EN=(8-x)cm,
又∵CE=
1
2
DC=4cm,
∴在Rt△ECN中,EN
2
=EC
2
+CN
2
,即(8-x)
2
=4
2
+x
2
,
解得:x=3,即CN=3cm.
故答案为:3cm.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题).
根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4cm,根据勾股定理就可以列出方程,从而解出CN的长.
本题考查翻折变换的问题,折叠问题其实质是轴对称,对应线段相等,对应角相等,找到相应的直角三角形利用勾股定理求解是解决本题的关键.
数形结合.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )