试题
题目:
如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF∥AB且
EF=
1
2
AB
;②∠BAF=∠CAF;③
S
四边形ADFE
=
1
2
AF·DE
;④∠BDF+∠FEC=2∠BAC,正确结论的序号是
③④
③④
.
答案
③④
解:①要使EF∥AB且
EF=
1
2
AB
,则需EF是△ABC的中位线,根据折叠得AE=EF,显然本选项不一定成立;
②要使∠BAF=∠CAF,则需AD=AE,显然本选项不一定成立;
③根据折叠得到DE垂直平分AF,故本选项正确;
④根据三角形的外角的性质,得∠BDF=∠DAF+∠AFD,∠CEF=∠EAF+∠AFE,又∠BAC=∠DFE,则∠BDF+∠FEC=2∠BAC,故本选项成立.
故答案为③④.
考点梳理
考点
分析
点评
翻折变换(折叠问题).
根据折叠得到DE垂直平分AF,再根据对角线互相垂直的四边形的面积等于两条对角线的乘积的一半即可证明③,根据三角形的外角的性质即可证明④.
此题综合考查了折叠的性质、对角线互相垂直的四边形的面积等于两条对角线的乘积的一半、三角形的外角的性质.
找相似题
(2013·梧州)如图,把矩形ABCD沿直线EF折叠,若∠1=20°,则∠2=( )
(2013·台湾)附图(①)为一张三角形ABC纸片,P点在BC上.今将A折至P时,出现折线BD,其中D点在AC上,如图(②)所示.若△ABC的面积为80,△DBC的面积为50,则BP与PC的长度比为何?( )
(2013·宁夏)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )
(2013·常德)如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为( )
(2012·资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=
2
3
,则四边形MABN的面积是( )